[2016-Dec-NewCisco 300-135 91Q&As VCE Files Free Download in Braindump2go[51-60

2016/12 New Cisco 300-135: Troubleshooting and Maintaining Cisco IP Networks (TSHOOT v2.0) Exam Questions New Updated Today!Free Instant Download 300-135 Exam Dumps (PDF & VCE) 91Q&As from Braindump2go.com Today! 100% Real Exam Questions! 100% Exam Pass Guaranteed! 1.|2016/12 New Cisco 300-135 Exam Dumps (PDF & VCE) 91Q&As Download: http://www.braindump2go.com/300-135.html2.|2016/12 New Cisco 300-135 Exam Questions & Answers: https://ldrv.ms/f/s!AvI7wzKf6QBjgSej29uIPgehTP0H QUESTION 51The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. BGPB. NTPC. IP NATD. IPv4 OSPF RoutingE. IPv4 OSPF RedistributionF. IPv6 OSPF RoutingG. IPv4 layer 3 security Answer: AExplanation: On R1 under router the BGP process Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 QUESTION 52The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. What is the solution to the fault condition? A. Under the BGP process, enter the bgp redistribute-internal command.B. Under the BGP process, bgp confederation identifier 65001command.C. Deleted the current BGP process and reenter all of the command using 65002 as the AS number.D. Under the BGP process, delete the neighbor 209.56.200.226 remote-as 65002 command and enter the neighbor 209.65.200.226 remote-as 65002 command. Answer: D Explanation:On R1 under router BGP change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 Ticket 5: NAT ACLTopology Overview (Actual Troubleshooting lab design is for below network design)- Client Should have IP 10.2.1.3- EIGRP 100 is running between switch DSW1 & DSW2- OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP- BGP 65001 is configured on R1 with Webserver cloud AS 65002- HSRP is running between DSW1 & DSW2 SwitchesThe company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.ASW1 and ASW2 are layer 2 switches.NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. Recently the implementation group has been using the test bed to do a 'proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same. Question-1 Fault is found on which device, Question-2 Fault condition is related to, Question-3 What exact problem is seen & what needs to be done for solution Client is unable to ping IP 209.65.200.241 Solution: Steps need to follow as below:- When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 Ipconfig ---- Client will be receiving IP address 10.2.1.3- IP 10.2.1.3 will be able to ping from R4, R3, R2, R1- Look for BGP NeighbourshipSh ip bgp summary ----- State of BGP will be in established state & will be able to receive I prefix (209.65.200.241)-As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of webserver & we are able to ping the same from R1. Further troubleshooting needs to be done on R1 on serial 0/0/1- Check for running config. i.e sh run for interface serial 0/0/1.. !From above snapshot we are able to see that IP needs to be PAT to serial 0/0/1 to reach web server IP (209.65.200.241). But in access-list of NAT IP allowed IP is 10.1.0.0/16 is allowed & need 10.2.0.0 /16 to- As per troubleshooting we are able to ping ip 10.2.1.3 from R1 & BGP is also receiving prefix of web server & we are able to ping the same from R1. Its

should be checked further for running config of interface for stopping- Change required: On R1, In natting we need to add client IP address for reachability to server. QUESTION 53The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R3D. R4E. DSW1F. DSW2G. ASW1 Answer: AExplanation: On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. QUESTION 54The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. BGPB. NTPC. IP NATD. IPv4 OSPF RoutingE. IPv4 OSPF RedistributionF. IPv6 OSPF RoutingG. IPv4 layer 3 security Answer: CExplanation:On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. QUESTION 55The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. What is the solution to the fault condition? A. Under the interface Serial 0/0/0 configuration enter the ip nat inside command.B. Under the interface Serial 0/0/0 configuration enter the ip nat outside command. C. Under the ip access-list standard nat_trafic configuration enter the permit 10.2.0.0 0.0.255.255 command.D. Under the ip access-list standard nat trafic configuration enter the permit 209.65.200.0 0.0.0.255command. Answer: CExplanation:On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. Ticket 6: R1 ACLTopology Overview (Actual Troubleshooting lab design is for below network design)- Client Should have IP 10.2.1.3-EIGRP 100 is running between switch DSW1 & DSW2- OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP-BGP 65001 is configured on R1 with Webserver cloud AS 65002-HSRP is running between DSW1 & DSW2 SwitchesThe company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.ASW1 and ASW2 are layer 2 switches.NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. Recently the implementation group has been using the test bed to do a 'proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same. Question-1 Fault is found on which device, Question-2 Fault condition is related to, Question-3 What exact problem is seen & what needs to be done for solution Client is unable to ping IP 209.65.200.241...Solution: Steps need to follow as below: When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4- Ipconfig ----- Client will be receiving IP address 10.2.1.3- IP 10.2.1.3 will be able to ping from R4, R3, R2, R1- Look for BGP Neighbourship- Sh ip bgp summary ---- State of BGP will be in active state. This means connectivity issue between serial- Check for running config. i.e sh run --- over here check for access-list configured on interface as BGP is down (No need to check for NAT configuration as its configuration should be right as first need to bring BGP up) - In above snapshot we can see that access-list of edge_security on R1 is not allowing wan IP network- Change required: On R1, we need to permit IP 209.65.200.222/30 under the access list. QUESTION 56The implementations group has been using the test bed to do a proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the

network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R4E. DSW1F. DSW2G. ASW1 Answer: AExplanation: On R1, we need to permit IP 209.65.200.222/30 under the access list. QUESTION 57The implementations group has been using the test bed to do a 'proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. BGPB. NTPC. IP NATD. IPv4 OSPF RoutingE. IPv4 OSPF RedistributionF. IPv6 OSPF RoutingG. IPv4 layer 3 security Answer: GExplanation: On R1, we need to permit IP 209.65.200.222/30 under the access list. QUESTION 58The implementations group has been using the test bed to do a proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. What is the solution to the fault condition? A. Under the interface Serial0/0/1 enter the ip access-group edge_security out command.B. Under the ip access-list extended edge_security configuration add the permit ip 209.65.200.224 0.0.0.3 any command.C. Under the ip access-list extended edge_security configuration delete the deny ip 10.0.0.0.0 0.255.255.255 any command.D. Under the interface Serial0/0/0 configuration delete the ip access-group edge security in command and enter the ip access-group edge security out command. Answer: BExplanation:On R1, we need to permit IP 209.65.200.222/30 under the access list. Ticket 7: Port SecurityTopology Overview (Actual Troubleshooting lab design is for below network design)- Client Should have IP 10.2.1.3- EIGRP 100 is running between switch DSW1 & DSW2- OSPF (Process ID 1) is running between R1, R2, R3, R4- Network of OSPF is redistributed in EIGRP- BGP 65001 is configured on R1 with Webserver cloud AS 65002- HSRP is running between DSW1 & DSW2 SwitchesThe company has created the test bed shown in the layer 2 and layer 3 topology exhibits. This network consists of four routers, two layer 3 switches and two layer 2 switches. In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.ASW1 and ASW2 are layer 2 switches.NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. The client workstations receive their IP address and default gateway via R4's DHCP server. The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary. Recently the implementation group has been using the test bed to do a proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. Each ticket has 3 sub questions that need to be answered & topology remains same. Question-1 Fault is found on which device, Question-2 Fault condition is related to, Question-3 What exact problem is seen & what needs to be done for solutionClient is unable to ping IP 209.65.200.241Solution:Steps need to follow as below:- When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 ipconfig ----- Client will be getting 169.X.X.X- On ASW1 port Fa1/0/1 & Fa1/0/2 access port VLAN 10 was assigned but when we checked interface it was showing downSh run ----- check for running config of int fa1/0/1 & fa1/0/2 (switchport access Vlan 10 will be there with switch port security command). Now check as belowSh int fa1/0/1 & sh int fa1/0/2 - As seen on interface the port is in err-disable mode so need to clear port.- Change required: On ASW1, for port security need command to remove port-security under interface under interface fa1/0/1 & fa1/0/2. QUESTION 59The implementations group has been using the test bed to do a `proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. On which device is the fault condition located? A. R1B. R2C. R3D. R4E. DSW1 F. DSW2G. ASW1H. ASW2 Answer: GExplanation:port security needs is configured on ASW1. QUESTION 60The

implementations group has been using the test bed to do a `proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. Use the supported commands to isolated the cause of this fault and answer the following questions. The fault condition is related to which technology? A. NTPB. Switch-to-Switch ConnectivityC. Access VlansD. Port SecurityE. VLAN ACL / Port ACLF. Switch Virtual Interface Answer: DExplanation:Port security is causing the connectivity issues. On ASW1, we need to remove port-security under interface fa1/0/1 & fa1/0/2. !!!RECOMMEND!!! 1.Braindump2go|2016/12 New Cisco 300-135 Exam Dumps (PDF & VCE) 91Q&As Download:http://www.braindump2go.com/300-135.html 2.Braindump2go|2016/12 New Cisco 300-135 Exam Questions & Answers: YouTube Video: YouTube.com/watch?v=zG-7PXuae5Q